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Chapter 1:
Overview of the PARI system

1.1 Introduction.

PARI/GP is a specialized computer algebra system, primarily aimed at number theorists, but has
been put to good use in many other different fields, from topology or numerical analysis to physics.

Although quite an amount of symbolic manipulation is possible, PARI does badly compared to
systems like Magma, Maple, Mathematica, Maxima, or Sagemath on such tasks, e.g. multivariate
polynomials, formal integration, etc. On the other hand, the three main advantages of the system
are its speed, the possibility of using directly data types which are familiar to mathematicians,
and its extensive algebraic number theory module (in the above-mentioned systems, Magma and
Sagemath provide similar features).

Non-mathematical strong points include the possibility to program either in high-level scripting
languages or with the PARI library, a mature system (development started in the mid eighties) that
was used to conduct and disseminate original mathematical research, while building a large user
community, linked by helpful mailing lists and a tradition of great user support from the developers.
And, of course, PARI/GP is Free Software, covered by the GNU General Public License, either
version 2 of the License or (at your option) any later version.

PARI is used in three different ways:

1) as a library libpari, which can be called from an upper-level language application, for
instance written in ANSI C or C++;

2) as a sophisticated programmable calculator, named gp, whose language GP contains most
of the control instructions of a standard language like C;

3) the compiler gp2c translates GP code to C, and loads it into the gp interpreter. A
typical script compiled by gp2c runs 3 to 10 times faster. The generated C code can be edited and
optimized by hand. It may also be used as a tutorial to 1ibpari programming.

The present Chapter 1 gives an overview of the PARI/GP system; gp2c is distributed separately
and comes with its own manual. Chapter 2 describes the GP programming language and the gp
calculator. Chapter 3 describes all routines available in the calculator. Programming in library
mode is explained in Chapters 4 and 5 in a separate booklet: User’s Guide to the PARI library
(libpari.pdf).

A tutorial for gp is provided in the standard distribution: A tutorial for PARI/GP (tuto-
rial.pdf) and you should read this first. You can then start over and read the more boring stuff
which lies ahead. You can have a quick idea of what is available by looking at the gp general
reference card (refcard.pdf; other more specialized reference cards are available). In case of need,
you can refer to the complete function description in Chapter 3.



How to get the latest version. Everything can be found on PARI’s home page:
https://pari.math.u-bordeaux.fr/.

From that point you may access all sources, some binaries, version information, the complete mailing
list archives, frequently asked questions and various tips. All threaded and fully searchable.

How to report bugs. Bugs are submitted online to our Bug Tracking System, available from
PARTI’s home page, or directly from the URL

https://pari.math.u-bordeaux.fr/Bugs/.

Further instructions can be found on that page.

1.2 Multiprecision kernels / Portability.

The PARI multiprecision kernel comes in three non exclusive flavors. See Appendix A for how
to set up these on your system; various compilers are supported, but the GNU gcc compiler is the
definite favorite.

A first version is written entirely in ANSI C, with a C4++-compatible syntax, and should be
portable without trouble to any 32 or 64-bit computer having no drastic memory constraints. We
do not know any example of a computer where a port was attempted and failed.

In a second version, time-critical parts of the kernel are written in inlined assembler. At present
this includes

e the whole ix86 family (Intel, AMD, Cyrix) starting at the 386, up to the Xbox gaming
console, including the Opteron 64 bit processor.

e three versions for the Sparc architecture: version 7, version 8 with SuperSparc processors,
and version 8 with MicroSparc I or II processors. UltraSparcs use the MicroSparc II version;

e the DEC Alpha 64-bit processor;

e the Intel Itanium 64-bit processor;

e the PowerPC equipping old macintoshs (G3, G4, etc.);
e the HPPA processors (both 32 and 64 bit);

e the MIPS processors (both 32 and 64 bit);

e the RISC-V 64 bit processors.

A third version uses the GNU MP library to implement most of its multiprecision kernel. It
improves significantly on the native one for large operands, say 100 decimal digits of accuracy or
more. You should enable it if GMP is present on your system. Parts of the first version are still in
use within the GMP kernel, but are scheduled to disappear.

A historical version of the PARI/GP kernel, written in 1985, was specific to 680x0 based
computers, and was entirely written in MC68020 assembly language. It ran on SUN-3/xx, Sony
News, NeXT cubes and on 680x0 based Macs. It is no longer part of the PARI distribution; to run
PARI with a 68k assembler micro-kernel, use the GMP kernel!



Mathematical notations and conventions.

e Standard rings and fields. We denote Z the ring of integers, Q the field of rational numbers,
R the field of real numbers and C the field of complex numbers (containing en element i such that
i? = —1). Given a prime power ¢, F, denotes the finite field with ¢ elements. Given a prime number
p, vp denotes the p-adic valuation Z, is ring of p-adic integers, Q,, the field of p-adic numbers and
C,, the p-adic completion of the algebraic closure of Q,. We write |z|, = p~ ) for z € C,.

e Intervals. We write [a,b] for the closed interval {z € R:a < x < b}, ]a,b[ for the open
interval {z € R:a < z < b} and similarly |a, b] and [a, b] for half-open intervals.

e Linear Algebra. Let K be some field and m,n < 0 be integers. Elements in the vector space
K™ are represented as column vectors (of length n). Elements of the algebra Homg (K™, K™) are
represented as m x m matrices; due to an unfortunate historical design decision, m x 0 matrices
do not exist in PARI unless m = 0. If M is an m X n matrix, we use the notation M to
denote its transpose (an n x m matrix). The (right) kernel of a matrix M is the vector space
{v € K™ Mv = 0}. Similarly, the image of M is the span of its columns.

1.3 The PARI types.

The GP language is not typed in the traditional sense; in particular, variables have no type.
In library mode, the type of all PARI objects is GEN, a generic type. On the other hand, it is
dynamically typed: each object has a specific internal type, depending on the mathematical object
it represents.

The crucial word is recursiveness: most of the PARI types are recursive. For example, the basic
internal type t_COMPLEX exists. However, the components (i.e. the real and imaginary part) of such
a “complex number” can be of any type. The only sensible ones are integers (we are then in Z[i]),
rational numbers (Q[i]), real numbers (R[i] = C), or even elements of Z/nZ (in (Z/nZ)[t]/(t>+1)),
or p-adic numbers when p = 3mod4 (Q,[i]). This feature must not be used too rashly in library
mode: for example you are in principle allowed to create objects which are “complex numbers of
complex numbers”. (This is not possible under gp.) But do not expect PARI to make sensible use
of such objects: you will mainly get nonsense.

On the other hand, it is allowed to have components of different, but compatible, types, which
can be freely mixed in basic ring operations + or x. For example, taking again complex numbers,
the real part could be an integer, and the imaginary part a rational number. On the other hand,
if the real part is a real number, the imaginary part cannot be an integer modulo n !

Let us now describe the types. As explained above, they are built recursively from basic
types which are as follows. We use the letter T' to designate any type; the symbolic names t_xxx
correspond to the internal representations of the types.

type t_INT Z Integers (with arbitrary precision)

type t_REAL R Real numbers (with arbitrary precision)
type t_INTMOD Z/nZ Intmods (integers modulo n)

type t_FRAC Q Rational numbers (in irreducible form)
type t_FFELT F, Finite field element

type t_COMPLEX  T7i] Complex numbers

type t_PADIC Q, p-adic numbers

type t_QUAD Q[w] Quadratic Numbers (where [Z[w] : Z] = 2)
type t_POLMOD TIX]/(P) Polmods (polynomials modulo P € T[X])
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type t_POL T[X] Polynomials

type t_SER T((X)) Power series (finite Laurent series)
type t_RFRAC T(X) Rational functions (in irreducible form)
type t_VEC ™ Row (i.e. horizontal) vectors

type t_COL ™ Column (i.e. vertical) vectors
type t_MAT M o (T') Matrices

type t_LIST ™ Lists

type t_STR Character strings

type t_CLOSURE Functions

type t_ERROR Error messages

type t_INFINITY —oo and +oo

and where the types T in recursive types can be different in each component. The first nine basic
types, from t_INT to t_POLMOD, are called scalar types because they essentially occur as coefficients
of other more complicated objects. Type t_POLMOD is used to define algebraic extensions of a base
ring, and as such is a scalar type.

In addition, there exist the type t_QFB for integral binary quadratic forms, and the internal
type t_VECSMALL. The latter holds vectors of small integers, whose absolute value is bounded by 23!
(resp. 253) on 32-bit, resp. 64-bit, machines. They are used internally to represent permutations,
polynomials or matrices over a small finite field, etc.

Every PARI object (called GEN in the sequel) belongs to one of these basic types. Let us have
a closer look.

1.3.1 Integers and reals. They are of arbitrary and varying length (each number carrying in its
internal representation its own length or precision) with the following mild restrictions (given for
32-bit machines, the restrictions for 64-bit machines being so weak as to be considered nonexistent):
integers must be in absolute value less than 2536870815 (j e, roughly 161614219 decimal digits). The
precision of real numbers is also at most 161614219 significant decimal digits, and the binary
exponent must be in absolute value less than 229, resp. 26!, on 32-bit, resp. 64-bit machines.

Integers and real numbers are nonrecursive types.

1.3.2 Intmods, rational numbers, p-adic numbers, polmods, and rational functions.
These are recursive, but in a restricted way.

For intmods or polmods, there are two components: the modulus, which must be of type
integer (resp. polynomial), and the representative number (resp. polynomial).

For rational numbers or rational functions, there are also only two components: the numerator
and the denominator, which must both be of type integer (resp. polynomial).

Finally, p-adic numbers have three components: the prime p, the “modulus” p¥, and an ap-
proximation to the p-adic number. Here Z, is considered as the projective limit <li_mZ /p*Z via
its finite quotients, and Q,, as its field of fractions. Like real numbers, the codewords contain an

exponent, giving the p-adic valuation of the number, and also the information on the precision of
the number, which is redundant with p*, but is included for the sake of efficiency.

1.3.3 Finite field elements. The exact internal format depends of the finite field size, but it
includes the field characteristic p, an irreducible polynomial T' € F,[X] defining the finite field
F,[X]/(T) and the element expressed as a polynomial in (the class of) X.



1.3.4 Complex numbers and quadratic numbers. Quadratic numbers are numbers of the
form a + bw, where w is such that [Z[w] : Z] = 2, and more precisely w = v/d/2 when d = 0mod 4,
and w = (1 +v/d)/2 when d = 1 mod 4, where d is the discriminant of a quadratic order. Complex
numbers correspond to the important special case w = v/—1.

Complex numbers are partially recursive: the two components a and b can be of type t_INT,
t_REAL, t_INTMOD, t_FRAC, or t_PADIC, and can be mixed, subject to the limitations mentioned
above. For example, a+bi with a and b p-adic is in Q,[i], but this is equal to Q, when p = 1 mod 4,
hence we must exclude these p when one explicitly uses a complex p-adic type. Quadratic numbers
are more restricted: their components may be as above, except that t_REAL is not allowed.

1.3.5 Polynomials, power series, vectors, matrices. They are completely recursive, over a
commutative base ring: their components can be of any type, and types can be mixed (however
beware when doing operations). Note in particular that a polynomial in two variables is simply a
polynomial with polynomial coefficients. Polynomials or matrices over noncommutative rings are
not supported.

In the present version 2.17.2 of PARI, it is not possible to handle conveniently power series of
power series, i.e. power series in several variables. However power series of polynomials (which are
power series in several variables of a special type) are OK. This is a difficult design problem: the
mathematical problem itself contains some amount of imprecision, and it is not easy to design an
intuitive generic interface for such beasts.

1.3.6 Strings. These contain objects just as they would be printed by the gp calculator.

1.3.7 Zero. What is zero? This is a crucial question in all computer systems. The answer we
give in PARI is the following. For exact types, all zeros are equivalent and are exact, and thus
are usually represented as an integer zero. The problem becomes nontrivial for imprecise types:
there are infinitely many distinct zeros of each of these types! For p-adics and power series the
answer is as follows: every such object, including 0, has an exponent e. This p-adic or X-adic zero
is understood to be equal to O(p®) or O(X¢) respectively.

Real numbers also have exponents and a real zero is in fact O(2¢) where e is now usually a
negative binary exponent. This of course is printed as usual for a floating point number (0.00 - - - or
0.Exx depending on the output format) and not with a O symbol as with p-adics or power series.
With respect to the natural ordering on the reals we make the following convention: whatever its
exponent a real zero is smaller than any positive number, and any two real zeroes are equal.

1.4 The PARI philosophy.

The basic principles which govern PARI is that operations and functions should, firstly, give
as exact a result as possible, and secondly, be permitted if they make any kind of sense.

In this respect, we make an important distinction between exact and inexact objects: by
definition, types t_REAL, t_PADIC or t_SER are imprecise. A PARI object having one of these
imprecise types anywhere in its tree is inezact, and ezact otherwise. No loss of accuracy (rounding
error) is involved when dealing with exact objects. Specifically, an exact operation between exact
objects will yield an exact object. For example, dividing 1 by 3 does not give 0.333-- -, but the
rational number (1/3). To get the result as a floating point real number, evaluate 1./3 or 0.+1/3.
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Conversely, the result of operations between imprecise objects, although inexact by nature,
will be as precise as possible. Consider for example the addition of two real numbers x and y. The
accuracy of the result is a priori unpredictable; it depends on the precisions of z and y, on their
sizes, and also on the size of = + y. From this data, PARI works out the right precision for the
result. Even if it is working in calculator mode gp, where there is a notion of default precision, its
value is only used to convert exact types to inexact ones.

In particular, if an operation involves objects of different accuracies, some digits will be dis-
regarded by PARI. It is a common source of errors to forget, for instance, that a real number is
given as r 4+ 2° where r is a rational approximation, e a binary exponent and ¢ is a nondescript
real number less than 1 in absolute value. Hence, any number less than 2¢ may be treated as an
exact zero:

? 0.E-38 + 1.E-100

%1 = 0.E-38
? 0.E100 + 1
%2 = 0.E100

As an exercise, if a = 2°(-100), why doa + 0. and a * 1. differ?

The second principle is that PARI operations are in general quite permissive. For instance
taking the exponential of a vector should not make sense. However, it frequently happens that one
wants to apply a given function to all elements in a vector. This is easily done using a loop, or
using the apply built-in function, but in fact PARI assumes that this is exactly what you want to
do when you apply a scalar function to a vector. Taking the exponential of a vector will do just
that, so no work is necessary. Most transcendental functions work in the same way™.

In the same spirit, when objects of different types are combined they are first automatically
mapped to a suitable ring, where the computation becomes meaningful:

? 1/3 + Mod(1,5)

%1 = Mod(3, 5)

? I+ 0(579)

%2 =2 + 5 + 2%¥572 + 573 + 3%574 + 4%5°5 + 24576 + 3%5°7 + 0(579)
? Mod(1,15) + Mod(1,10)

%3 = Mod(2, 5)

The first example is straightforward: since 3 is invertible mod 5, (1/3) is easily mapped to
Z/5Z. In the second example, I stands for the customary square root of —1; we obtain a 5-adic
number, 5-adically close to a square root of —1. The final example is more problematic, but there
are natural maps from Z/15Z and Z/10Z to Z/5Z, and the computation takes place there.

* An ambiguity arises with square matrices. PARI always considers that you want to do com-
ponentwise function evaluation in this context, hence to get for example the standard exponential
of a square matrix you would need to implement a different function.
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1.5 Operations and functions.

The available operations and functions in PARI are described in detail in Chapter 3. Here is
a brief summary:

1.5.1 Standard arithmetic operations.

Of course, the four standard operators +, -, *, / exist. We emphasize once more that division is, as
far as possible, an exact operation: 4 divided by 3 gives (4/3). In addition to this, operations on
integers or polynomials, like \ (Euclidean division), % (Euclidean remainder) exist; for integers, \/
computes the quotient such that the remainder has smallest possible absolute value. There is also
the exponentiation operator ~, when the exponent is of type integer; otherwise, it is considered as a
transcendental function. Finally, the logical operators ! (not prefix operator), && (and operator),
|| (or operator) exist, giving as results 1 (true) or 0 (false).

1.5.2 Conversions and similar functions.

Many conversion functions are available to convert between different types. For example floor,
ceiling, rounding, truncation, etc.... Other simple functions are included like real and imaginary
part, conjugation, norm, absolute value, changing precision or creating an intmod or a polmod.

1.5.3 Transcendental functions.

They usually operate on any complex number, power series, and some also on p-adics. The list is
ever-expanding and of course contains all the elementary functions (exp/log, trigonometric func-
tions), plus many others (modular functions, Bessel functions, polylogarithms...). Recall that by
extension, PARI usually allows a transcendental function to operate componentwise on vectors or
matrices.

1.5.4 Arithmetic functions.

Apart from a few like the factorial function or the Fibonacci numbers, these are functions which
explicitly use the prime factor decomposition of integers. The standard functions are included. A
number of factoring methods are used by a rather sophisticated factoring engine (to name a few,
Shanks’s SQUFOF, Pollard’s rho, Lenstra’s ECM, the MPQS quadratic sieve). These routines
output strong pseudoprimes, which may be certified by the APRCL test.

There is also a large package to work with algebraic number fields. All the usual operations on
elements, ideals, prime ideals, etc. are available. More sophisticated functions are also implemented,
like solving Thue equations, finding integral bases and discriminants of number fields, computing
class groups and fundamental units, computing in relative number field extensions, Galois and class
field theory, and also many functions dealing with elliptic curves over Q or over local fields.

1.5.5 Other functions.

Quite a number of other functions dealing with polynomials (e.g. finding complex or p-adic roots,
factoring, etc), power series (e.g. substitution, reversion), linear algebra (e.g. determinant, charac-
teristic polynomial, linear systems), and different kinds of recursions are also included. In addi-
tion, standard numerical analysis routines like univariate integration (using the double exponential
method), real root finding (when the root is bracketed), polynomial interpolation, infinite series
evaluation, and plotting are included.

And now, you should really have a look at the tutorial before proceeding.
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EMACS:

Chapter 2:
The gp Calculator

2.1 Introduction.

Originally, gp was designed as a debugging device for the PARI system library. Over the
years, it has become a powerful user-friendly stand-alone calculator. The mathematical functions
available in PARI and gp are described in the next chapter. In the present one, we describe the
specific use of the gp programmable calculator.

If you have GNU Emacs and use the PariEmacs package, you can work in a special Emacs shell,
described in Section 2.16. Specific features of this Emacs shell are indicated by an EMACS sign in
the left margin.

We briefly mention at this point GNU TeXmacs (https://www.texmacs.org/), a free wysiwyg
editing platform that allows to embed an entire gp session in a document, and provides a nice
alternative to PariEmacs.

2.1.1 Startup.
To start the calculator, the general command line syntax is:
gp [-D key=vall [files]

where items within brackets are optional. The [files| argument is a list of files written in the GP
scripting language, which will be loaded on startup. There can be any number of arguments of the
form -D key=wal, setting some internal parameters of gp, or defaults: each sets the default key to
the value val. See Section 2.12 below for a list and explanation of all defaults. These defaults can
be changed by adding parameters to the input line as above, or interactively during a gp session,
or in a preferences file also known as gprc.

If a preferences file (to be discussed in Section 2.14) is found, gp then reads it and executes the
commands it contains. This provides an easy way to customize gp. The files argument is processed
right after the gprc.

A copyright banner then appears which includes the version number, and a lot of useful tech-
nical information. After the copyright, the computer writes the top-level help information, some
initial defaults, and then waits after printing its prompt, which is ’? ’ by default . Whether ex-
tended on-line help and line editing are available or not is indicated in this gp banner, between the
version number and the copyright message. Consider investigating the matter with the person who
installed gp if they are not. Do this as well if there is no mention of the GMP kernel.
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2.1.2 Getting help.

To get help, type a ? and hit return. A menu appears, describing the main categories of
available functions and how to get more detailed help. If you now type ?n with n = 1,2,..., you
get the list of commands corresponding to category n and simultaneously to Section 3.n of this
manual. If you type ?functionname where functionname is the name of a PARI function, you will
get a short explanation of this function.

If extended help (see Section 2.13.1) is available on your system, you can double or triple the ?
sign to get much more: respectively the complete description of the function (e.g. ??sqrt), or a list
of gp functions relevant to your query (e.g. ???"elliptic curve" or ??7"quadratic field").

If gp was properly installed (see Appendix A), a line editor is available to correct the command
line, get automatic completions, and so on. See Section 2.15 or ??readline for a short summary
of the line editor’s commands.

If you type ?\ you will get a short description of the metacommands (keyboard shortcuts).

Finally, typing 7. will return the list of available (pre-defined) member functions. These
are functions attached to specific kind of objects, used to retrieve easily some information from
complicated structures (you can define your own but they won’t be shown here). We will soon
describe these commands in more detail.

More generally, commands starting with the symbols \ or 7, are not computing commands, but
are metacommands which allow you to exchange information with gp. The available metacommands
can be divided into default setting commands (explained below) and simple commands (or keyboard
shortcuts, to be dealt with in Section 2.13).

2.1.3 Input.

Just type in an instruction, e.g. 1 + 1, or Pi. No action is undertaken until you hit the
<Return> key. Then computation starts, and a result is eventually printed. To suppress printing
of the result, end the expression with a ; sign. Note that many systems use ; to indicate end of
input. Not so in gp: a final semicolon means the result should not be printed. (Which is certainly
useful if it occupies several screens.)

2.1.4 Interrupt, Quit.

Typing quit at the prompt ends the session and exits gp. At any point you can type Ctrl-C
(that is press simultaneously the Control and C keys): the current computation is interrupted and
control given back to you at the gp prompt, together with a message like

***  at top-level: gcd(a,b)
KKk T

*%* gcd: user interrupt after 236 ms.

telling you how much time elapsed since the last command was typed in and in which GP function
the computation was aborted. It does not mean that that much time was spent in the function,
only that the evaluator was busy processing that specific function when you stopped it.

14



2.2 The general gp input line.

The gp calculator uses a purely interpreted language GP. The structure of this language is
reminiscent of LISP with a functional notation, f(x,y) rather than (f x y): all programming
constructs, such as if, while, etc...are functions®, and the main loop does not really execute,
but rather evaluates (sequences of) expressions. Of course, it is by no means a true LISP, and has
been strongly influenced by C and Perl since then.

2.2.1 Introduction. User interaction with a gp session proceeds as follows. First, one types a
sequence of characters at the gp prompt; see Section 2.15 for a description of the line editor. When
you hit the <Return> key, gp gets your input, evaluates it, then prints the result and assigns it to
an “history” array.

More precisely, the input is case-sensitive and, outside of character strings, blanks are com-
pletely ignored. Inputs are either metacommands or sequences of expressions. Metacommands are
shortcuts designed to alter gp’s internal state, such as the working precision or general verbosity
level; we shall describe them in Section 2.13, and ignore them for the time being.

The evaluation of a sequence of instructions proceeds in two phases: your input is first digested
(byte-compiled) to a bytecode suitable for fast evaluation, in particular loop bodies are compiled
only once but a priori evaluated many times; then the bytecode is evaluated.

An expression is formed by combining constants, variables, operator symbols, functions and
control statements. It is evaluated using the conventions about operator priorities and left to right
associativity. An expression always has a value, which can be any PARI object:

71+ 1

%l =2 \\ an ordinary integer

? x

%2 = x \\ @ polynomial of degree 1 in the unknown x

? print("Hello")

Hello \\ void return value, 'Hello’ printed as side effect

7?7 f(x) = x72
W = (x)->x"2  \\ a user function

In the third example, Hello is printed as a side effect, but is not the return value. The print
command is a procedure, which conceptually returns nothing. But in fact procedures return a
special void object, meant to be ignored (but which evaluates to 0 in a numeric context, and
stored as 0 in the history or results). The final example assigns to the variable £ the function
2+ 22, the alternative form f = x->x"2 achieving the same effect; the return value of a function
definition is, unsurprisingly, a function object (of type t_CLOSURE).

Several expressions are combined on a single line by separating them with semicolons (’;’).
Such an expression sequence will be called a seq. A seq also has a value, which is the value of the
last expression in the sequence. Under gp, the value of the seq, and only this last value, becomes
an history entry. The values of the other expressions in the seq are discarded after the execution
of the seq is complete, except of course if they were assigned into variables. In addition, the value
of the seq is printed if the line does not end with a semicolon ;.

* Not exactly, since not all their arguments need be evaluated. For instance it would be stupid
to evaluate both branches of an if statement: since only one will apply, only this one is evaluated.
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2.2.2 The gp history of results.

This is not to be confused with the history of your commands, maintained by readline. The
gp history contains the results they produced, in sequence.

The successive elements of the history array are called %1, %2, ...As a shortcut, the latest
computed expression can also be called %, the previous one %¢, the one before that %°¢ ¢ and so on.

When you suppress the printing of the result with a semicolon, it is still stored in the history,
but its history number will not appear either. It is a better idea to assign it to a variable for later
use than to mentally recompute what its number is. Of course, on the next line, you may just use

%

The time used to compute that history entry is also stored as part of the entry and can be
recovered using the %# operator: %#1, %#2 %#¢; %# by itself returns the time needed to compute
the last result (the one returned by %). The output is a vector with two components [cpu, reall
where cpu is the CPU time and real is the wall clock time.

Remark. The history “array” is in fact better thought of as a queue: its size is limited to 5000
entries by default, after which gp starts forgetting the initial entries. So %1 becomes unavailable as
gp prints %5001. You can modify the history size using histsize.

2.2.3 Special editing characters. A GP program can of course have more than one line. Since
your commands are executed as soon as you have finished typing them, there must be a way to tell
gp to wait for the next line or lines of input before doing anything. There are three ways of doing
this.

The first one is to use the backslash character \ at the end of the line that you are typing,
just before hitting <Return>. This tells gp that what you will write on the next line is the physical
continuation of what you have just written. In other words, it makes gp forget your newline
character. You can type a \ anywhere. It is interpreted as above only if (apart from ignored
whitespace characters) it is immediately followed by a newline. For example, you can type

73+ \
4

instead of typing 3 + 4.

The second one is a variation on the first, and is mostly useful when defining a user function
(see Section 2.7): since an equal sign can never end a valid expression, gp disregards a newline
immediately following an =.

? a-=
123
%1 = 123

The third one is in general much more useful, and uses braces { and }. An opening brace {
signals that you are typing a multi-line command, and newlines are ignored until you type a closing
brace }. There are two important, but easily obeyed, restrictions: first, braces do not nest; second,
inside an open brace-close brace pair, all input lines are concatenated, suppressing any newlines.
Thus, all newlines should occur after a semicolon (;), a comma (,) or an operator (for clarity’s
sake, never split an identifier over two lines in this way). For instance, the following program
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would silently produce garbage, since this is interpreted as a=bb=c which assigns the value of ¢ to
both bb and a. It should have been written

{

2.3 The PARI types.

We see here how to input values of the different data types known to PARI. Recall that blanks are
ignored in any expression which is not a string (see below).

A note on efficiency. The following types are provided for convenience, not for speed: t_INTMOD,
t_FRAC, t_PADIC, t_QUAD, t_POLMOD, t_RFRAC. Indeed, they always perform a reduction of some
kind after each basic operation, even though it is usually more efficient to perform a single reduction
at the end of some complex computation. For instance, in a convolution product ), 4jen TiY; 0
Z/NZ — common when multiplying polynomials! —, it is quite wasteful to perform n reductions
modulo N. In short, basic individual operations on these types are fast, but recursive objects
with such components could be handled more efficiently: programming with libpari will save large
constant factors here, compared to GP.

2.3.1 Integers (t_INT). After an (optional) leading + or -, type in the decimal digits of your
integer. No decimal point!

? 1234567

%1 = 1234567

? -3

%2 = -3

? 1. \\ oops, not an integer
%3 = 1.000000000000000000000000000

Integers can be input in hexadecimal notation by prefixing them with 0x; hexadecimal digits
(a,...,f) can be input either in lowercase or in uppercase:

? OxF
%4 = 15

? Oxlabcd
%5 = 109517

Integers can also be input in binary by prefixing them with Ob:

? 0b010101
%6 = 21
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2.3.2 Real numbers (t_REAL).

Real numbers are represented (approximately) in a floating point system, internally in base 2,
but converted to base 10 for input / output purposes. A t_REAL object has a given bit accuracy
(or bit precision) ¢ > 0; it comprises

e a sign s: +1, —1 or 0;
e a mantissa m: a multiprecision integer, 0 < m < 2;

e an exponent e: a small integer in [—258,2B[, where B = 31 on a 32-bit machine and 63
otherwise.

This data may represent any real number z such that
|z — sm2¢| < 2¢7%.

We consider that a t_REAL with sign s = 0 has accuracy ¢ = 0, so that its mantissa is useless, but
it still has an exponent e and acts like a machine epsilon for all accuracies < e.

After an (optional) leading + or -, type a number with a decimal point. Leading zeroes may
be omitted, up to the decimal point, but trailing zeroes are important: your t_REAL is assigned
an internal precision, which is the supremum of the input precision, one more than the number of
decimal digits input, and the default realprecision. For example, if the default precision is 38
digits, typing 2. yields a precision of 38 digits, but 2.0...0 with 45 zeros gives a number with
internal decimal precision at least 45, although less may be printed.

You can also use scientific notation with the letter E or e. As usual, en is interpreted as x10"
for all integers n. Since the result is converted to a t_REAL, you may often omit the decimal point
in this case: 6.02 E 23 or 1le-5 are fine, but e10 is not.

By definition, 0.E n returns a real 0 of exponent n, whereas 0. returns a real 0 “of default
precision” (of exponent —realprecision), see Section 1.3.7, behaving like the machine epsilon for
the current default accuracy: any float of smaller absolute value is indistinguishable from 0.

Note on output formats. A zero real number is printed in e format as 0. Exxz where zx is the
(usually negative) decimal exponent of the number (cf. Section 1.3.7). This allows the user to check
the accuracy of that particular zero.

When the integer part of a real number z is not known exactly because the exponent of x is
greater than the internal precision, the real number is printed in e format.

Technical note. The internal precision is actually expressed in bits and can be viewed and
manipulated globally in interactive use via realprecision (decimal digits, as explained above;
shortcut \p) or realbitprecision (bits; shortcut \pb), the latter allowing finer granularity. See
Section 3.11 for details. In programs we advise to leave this global variable alone and adapt precision
locally for a given sequence of computations using localbitprec.

Note that most decimal floating point numbers cannot be converted exactly in binary, the
(binary) number actually stored is a rounded version of the (decimal) number input. Analogously,
a decimal output is rounded from the internal binary representation.
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2.3.3 Intmods (t_INTMOD). To create the image of the integer a in Z/bZ (for some nonzero integer
b), type Mod (a,b); not ajb. Internally, all operations are done on integer representatives belonging
to [0,b — 1].

Note that this type is available for convenience, not for speed: each elementary operation
involves a reduction modulo b.

If x is a t_INTMOD Mod(a,b), the following member function is defined:

x.mod: return the modulus b.

2.3.4 Rational numbers (t_FRAC). All fractions are automatically reduced to lowest terms, so it
is impossible to work with reducible fractions. To enter n/m just type it as written. As explained
in Section 3.5.8, floating point division is not performed, only reduction to lowest terms.

Note that rational computation are almost never the fastest method to proceed: in the PARI
implementation, each elementary operation involves computing a ged. It is generally a little more
efficient to cancel denominators and work with integers only:

7?7 P = Pol( vector(1073,i, 1/1) ); \\ big polynomial with small rational coeffs
? P2

time = 1,392 ms.

7 ¢ = content(P); c"2 * (P/c)”2; \\ same computation in integers

time = 1,116 ms.

And much more efficient (but harder to setup) to use homomorphic imaging schemes and modular
computations. As the simple example below indicates, if you only need modular information, it
is very worthwhile to work with t_INTMODs directly, rather than deal with t_FRACs all the way
through:

? p = nextprime(1077);

? sum(i=1, 1075, 1/i) % p
time = 13,288 ms.

%1 = 2759492

? sum(i=1, 10°5, Mod(1/i, p))
time = 60 ms.

%2 = Mod (2759492, 10000019)

2.3.5 Finite field elements (t_FFELT). Let T' € F,[X]| be a monic irreducible polynomial defining
your finite field over F,,, for instance obtained using ffinit. Then the ffgen function creates a
generator of the finite field as an F,-algebra, namely the class of X in F),[X]/(T'), from which you
can build all other elements. For instance, to create the field Fgs, we write

7 T = ffinit(2, 8);

7 y = ffgen(T, ’y);

7 y°0 \\ the unit element in the field
w3 =1

? y°8

% =y 6+ yb5+y4+y3+y+1

The second (optional) parameter to ffgen is only used to display the result; it is customary to
use the name of the variable we assign the generator to. If g is a t_FFELT, the following member
functions are defined:
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g.pol: the polynomial (with reduced integer coefficients) expressing g in term of the field
generator.

g.p: the characteristic of the finite field.

g.f: the dimension of the definition field over its prime field; the cardinality of the definition
field is thus p/.

g.mod: the minimal polynomial (with reduced integer coefficients) of the field generator.

2.3.6 Complex numbers (t_COMPLEX). To enter x + iy, type x + I*xy. (That’s I, not i!) The
letter I stands for v/—1. The “real” and “imaginary” parts x and y can be of type t_INT, t_REAL,
t_INTMOD, t_FRAC, or t_PADIC.

2.3.7 p-adic numbers (t_PADIC):. Typing 0(p~k), where p is a prime and k is an integer,
yields a p-adic 0 of accuracy k, representing any p-adic number whose valuation is > k. To input a
general nonzero p-adic number, write a suitably precise rational or integer approximation and add
0(p~k) to it. For example, you can type in the 7-adic number

2x77(-1) + 3 + 4x7 + 2x772 + 0(7°3)
exactly as shown, or equivalently as 905/7 + 0(773).

Note that it is not checked whether p is indeed prime but results are undefined if this is not
the case: you can try to work on 10-adics if you want, but disasters will happen as soon as you do
something nontrivial. For instance:

?7t=2x (1/10 + 0(1075));
7 lift(t)
%2 = 2/10 \\ not reduced (invalid t_FRAC)
7 factor(x"2-t)
***  at top-level: factor(x~2-%1)
koK e et
*x** factor: impossible inverse in Fl_inv: Mod(2, 10000).

Note that 0(25) is not the same as 0(5°2); you want the latter!
If a is a t_PADIC, the following member functions are defined:
a.mod: returns the modulus p*.

a.p: returns p.

Note that this type is available for convenience, not for speed: internally, t_PADICs are stored
as p-adic units modulo some p*. Each elementary operation involves updating p* (multiplying or
dividing by powers of p) and a reduction mod p*. In particular, additions are slow.

?n = 1+0(2°20); for (i=1,10"6, n++)
time = 841 ms.
? n = Mod(1,27°20); for (i=1,10"6, n++)
time = 441 ms.
?7n=1; for (i=1,10"6, n++)
time = 328 ms.

The penalty attached to maintaining p* decreases steeply as p increases (and updates become
rare). But t_INTMODs remain at least 25% more efficient. (On the other hand, they do not allow
denominators!)
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2.3.8 Quadratic numbers (t_QUAD). This type is used to work in the quadratic order of discrim-
inant d, where d is a nonsquare integer congruent to 0 or 1 (modulo 4). The command

w = quadgen(d,’w)

assigns to w the “canonical” generator for the integer basis of the order of discriminant d, i.e. w =
Vd/2 if d = 0mod 4, and w = (1++/d)/2 if d = 1 mod 4 and set its name to w. The name ’w is used
for printing and we advise to store it in a variable of the same name. Beware, two t_QUADs with
different discriminants can be printed in the same way and not be equal; however, gp will refuse to
add or multiply them for example, so use different names for different discriminants.

Since the order is Z + wZ, any other element can be input as a = z+y*w for some integers x
and y. In fact, you may work in its fraction field Q(\/ZZ) and use t_FRAC values for z and y.

The following member functions are defined:
a.disc retrieves the discriminant d;
a.mod: returns the minimal polynomial T" of w;

a.pol: returns the t_POL z 4+ wy. In particular [x,y] = Vecrev(a.pol) recovers x and y.
The components z and y are also obtained via real(a) and imag(z) respectively.

2.3.9 Polmods (t_POLMOD). Exactly as for intmods, to enter x mody (where x and y are poly-
nomials), type Mod(x,y), not x%y. Note that when y is an irreducible polynomial in one variable,
polmods whose modulus is y are simply algebraic numbers in the finite extension defined by the
polynomial y. This allows us to work easily in number fields, finite extensions of the p-adic field
Q,, or finite fields.

Note that this type is available for convenience, not for speed: each elementary operation
involves a reduction modulo y. If p is a t_POLMOD, the following member functions are defined:

p-pol: return a representative of the polynomial class of minimal degree.

p.mod: return the modulus.

Important remark. Mathematically, the variables occurring in a polmod are not free variables.
But internally, a congruence class in R[t]/(y) is represented by its representative of lowest degree,
which is a t_POL in R[t], and computations occur with polynomials in the variable . PARI will not
recognize that Mod(y, y~2 + 1) is “the same” as Mod(x, x"2 + 1), since x and y are different
variables.

To avoid inconsistencies, polmods must use the same variable in internal operations (i.e. be-
tween polmods) and variables of lower priority for external operations, typically between a poly-
nomial and a polmod. See Section 2.5.3 for a definition of “priority” and a discussion of (PARI’s
idea of ) multivariate polynomial arithmetic. For instance:

? Mod(x, x"2+ 1) + Mod(x, x72 + 1)

%1 = Mod(2%x, x"2 + 1) \\ 2i (or —2i), with i® = —1
? x + Mod(y, y°2 + 1)

h2 = x + Mod(y, y~2 + 1) \\ in Q(i)[x]

? y + Mod(x, x72 + 1)

%3 = Mod(x + y, x°2 + 1) \\ in Q(y)[i]

The first two are straightforward, but the last one may not be what you want: y is treated here as
a numerical parameter, not as a polynomial variable.
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If the main variables are the same, it is allowed to mix t_POL and t_POLMODs. The result is
the expected t_POLMOD. For instance

? x + Mod(x, x”2 + 1)

%1 = Mod(2*x, x~2 + 1)
2.3.10 Polynomials (t_POL). Type the polynomial in a natural way, not forgetting to put a “«”
between a coefficient and a formal variable;

71 4+ 2%x + 3%x72
%l = 3%x"2 + 2xx + 1

This assumes that x is still a ”free variable”.

?7x=1; 1 + 2%x + 3*%x"2
%2 =6

generates an integer, not a polynomial! It is good practice to never assign values to polynomial
variables to avoid the above problem, but a foolproof construction is available using ’x instead of x:
’x is a constant evaluating to the free variable with name x, independently of the current value
of x.

?7x=1; 1+ 2%¥’x + 3%’x72
%3 = 1 + 2*%x + 3%x"2
7?7 x ="7x; 1+ 2%x + 3%x72
%4 = 1 + 2xx + 3*x72

You may also use the functions Pol or Polrev:

? Pol([1,2,3]) \\ Pol creates a polynomial in x by default
%1 = x72 + 2%x + 3

? Polrev([1,2,3])

%2 = 3*xx"2 + 2xx + 1

? Pol([1,2,31, ’y) \\ we use ’y, safer than y

%3 =y 2 + 2%y + 3

The latter two are much more efficient constructors than an explicit summation (the latter is
quadratic in the degree, the former linear):

? for (i=1, 1074, Polrev( vector(100, i,i) ) )
time = 124ms

? for (i=1, 1074, sum(i = 1, 100, (i+1) * ’x7i) )
time = 3,98bms

Polynomials are always printed as univariate polynomials over a commutative base ring, with
monomials sorted by decreasing degree:

7 (x+y+1)°2
%1 = x"2 + (2%y + 2)*x + (y™2 + 2%y + 1)

(Univariate polynomial in x whose coefficients are polynomials in y.) See Section 2.5 for valid vari-
able names, and a discussion of multivariate polynomial rings. Polynomials over noncommutative
rings are not supported.
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2.3.11 Power series (t_SER). Typing 0(X"k), where k is an integer, yields an X-adic 0 of accu-
racy k, representing any power series in X whose valuation is > k. Of course, X can be replaced by
any other variable name! To input a general nonzero power series, type in a polynomial or rational
function (in X, say), and add 0(X"k) to it. The discussion in the t_POL section about variables
remains valid; a constructor Ser replaces Pol and Polrev. Power series over noncommutative rings
are not supported.

Caveat. Power series with inexact coeflficients sometimes have a nonintuitive behavior: if k£ signif-
icant terms are requested, an inexact zero is counted as significant, even if it is the coefficient of
lowest degree. This means that useful higher order terms may be disregarded.

If a series with a zero leading coefficient must be inverted, then as a desperation measure that
coefficient is discarded, and a warning is issued:

?7C=0.+7+0(y°2);
7 1/C

%% _/_: Warning: normalizing a series with O leading term.
h2 =y~ -1+ 0(1)

The last output could be construed as a bug since it is a priori impossible to deduce such a result
from the input (0. represents any sufficiently small real number). But it was thought more useful
to try and go on with an approximate computation than to raise an early exception.

If the series precision is insufficient, errors may occur (mostly division by 0), which could have
been avoided by a better global understanding of the computation:

?7A=1/(y+0.); B=1. + 0(y);
? B * denominator (A)
%2 = 0.E-38 + 0(y)

7 A/B

xx*x  at top-level: A/B

oKk -

**%% _/_: impossible inverse in gdiv: 0.E-38 + 0(y).
? A%B

%4 = 1.0000000000000000000000000000000000000*y~-1 + 0(y~0)

2.3.12 Rational functions (t_RFRAC). As for fractions, all rational functions are automatically
reduced to lowest terms. All that was said about fractions in Section 2.3.4 remains valid here.

2.3.13 Binary quadratic forms (t_QFB). These are input using the function Qfb. For example,
both Qfb(1,2,3) and Qfb([1,2,3]) create the binary form ¢ = x? + 2zy + 3y?. It is imaginary
since its discriminant 22 — 4 x 3 = —8 is negative. Although imaginary forms could be positive or
negative definite, only positive definite forms are implemented.

The discriminant can be retrieved via q.disc. The individual components are obtained via
either of

[a,b,c] = Vec(q);

a = component(q,1);
b = component(q,2);
c = component(q,3);

See also the function qfbprimeform which creates a prime form of given discriminant.
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2.3.14 Row and column vectors (t_VEC and t_COL). To enter a row vector, type the compo-

W

nents separated by commas “,”, and enclosed between brackets “[” and “]”, e.g. [1,2,3]. To

enter a column vector, type the vector horizontally, and add a tilde “~” to transpose. [ ] yields the
empty (row) vector. The function Vec can be used to transform any object into a vector (see Chap-
ter 3). The construction [i..j], where ¢ < j are two integers returns the vector [i,i+1,...,5 — 1, 7]

7 [1,2,3]

%1 = [1, 2, 3]

7 [-2..3]

%2 = [-2, -1, 0, 1, 2, 3]
Let the variable v contain a (row or column) vector:

e v[m] refers to its m-th entry; you can assign any value to v[m], i.e. write something like
vlm] = expr.

e v[i..j], where i < j, returns the vector slice containing elements v[i], ..., v[j]; you can not
assign a result to v[i..j].

e v[~i] returns the vector whose i-th entry has been removed; you can not assign a result to
v[~i].
In the last two constructions v[i..j] and v[~i], ¢ and j are allowed to be negative integers, in
which case, we start counting from the end of the vector: e.g., —1 is the index of the last element.

?v=1[1,2,3,4];
? v[2..4]

%2 = [2, 3, 4]

? v[~3]

%3 = [1, 2, 4]
? v[~-1]

%3 = [1, 2, 3]
? v[-3..-1]

% = [2, 3, 4]

Remark. vector is the standard constructor for row vectors whose ¢-th entry is given by a simple
function of i; vectorv is similar for column vectors:

? vector(10, i, i"2+1)
%1 = [2, 5, 10, 17, 26, 37, 50, 65, 82, 101]

The functions Vec and Col convert objects to row and column vectors respectively (as well as
Vecrev and Colrev, which revert the indexing):

? T = poltchebi(5) \\ 5-th Chebyshev polynomial
%1 = 16%x"5 - 20*%x~3 + b*x

? Vec(T)

%2 = [16, 0, -20, 0, 5, 0] \\ coefficients of T

? Vecrev(T)

%3 = [0, 5, 0, -20, 0, 16] \\ ... in reverse order
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Remark. For v a t_VEC, t_COL, t_VECSMALL, t_LIST or t_MAT, the alternative set-notations

[gx) | x <= v, £(x)]
x | x <- v, £(x)]
[gx) | x <= v]

are available as shortcuts for

apply(g, select(f, Vec(v)))
select(f, Vec(v))
apply(g, Vec(v))

respectively, and may serve as t_VEC constructors:

? [ p | p<- primes(10), isprime(p+2) ]
%2 = [3, 5, 11, 17, 29]

returns the primes p (among the first 10 primes) such that (p,p + 2) is a twin pair;

? [p2 | p<- primes(10), p % 4 == 1]
%3 = [25, 169, 289, 841]

returns the squares of the primes congruent to 1 modulo 4, where p runs among the first 10 primes.
To iterate over more than one variable, you may separate clauses with ; as in

? [x+ty | x <= [1..3]; y <= [1..2] ]
w4 = [2, 3, 3, 4, 4, 5]

? [ [x,y] | x <- [1..4], isprime(x); y <- [2..5], y % 3 == 1]
w5 = [[2, 41, [3, 4]]

2.3.15 Matrices (t_MAT). To enter a matrix, type the components row by row, the components
being separated by commas “,”, the rows by semicolons “;”, and everything enclosed in brackets
“[” and “17, e.g. [x,y; z,t; u,v]. [;] yields an empty (0 x 0) matrix. The function Mat
transforms any object into a matrix, and matrix creates matrices whose (i, j)-th entry is described

by a function f(i,j):

? Mat (1)

% =

[1]

7 matrix(2,2, i,j, 2*i+j)
%2 =

[3 4]

[5 6]
Matrix multiplication assumes that the base ring containing the matrix entries is commutative.
Let the variable M contain a matrix, and let 4, j, k, ! denote four integers:

e M[1i,j] refers to its (i, j)-th entry; you can assign any result to M[1i, j].
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e M[i,] refers to its i-th row; you can assign a t_VEC of the right dimension to M[i,].
e M[,j] refers to its j-th column; you can assign a t_COL of the right dimension to M[, jJ.

But M[i] is meaningless and triggers an error. The “range” ¢..; and “caret” ~c notations are
available as for vectors; you can not assign to any of these:

e M[i..j, k..1],: < j, k <, returns the submatrix built from the rows i to j and columns
k tol of M.

e M[i..j,] returns the submatrix built from the rows i to j of M.
e M[,i..j] returns the submatrix built from the columns ¢ to j of M.
e M[i..j, “k],i < j, returns the submatrix built from the rows ¢ to j and column k removed.
e M["k,] returns the submatrix with row k& removed.
e M[, k] returns the submatrix with column k& removed.
Finally,
e M[i..j, k] returns the t_COL built from the k-th column (entries i to j).
e M["i, k] returns the t_COL built from the k-th column (entry i removed).
e M[k, i..j] returns the t_VEC built from the k-th row (entries i to 7).
e M[k, ~i] returns the t_VEC built from the k-th row (entry ¢ removed).

?M=1[1,2,3;4,5,6;7,8,9];
? M[1..2, 2..3]

%2 =

[2 3]

[5 6]

7 M[1..2,]
W3 =

[1 2 3]

[4 5 6]

? M[,2..3]
4 =

[2 3]

(5 6]
[8 9]

All this is recursive, so if M is a matrix of matrices of ..., an expression such as M[1,1] [, 3] [4]
= 1is perfectly valid (and actually identical to M[1,1] [4,3] = 1), assuming that all matrices along
the way have compatible dimensions.
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Technical note (design flaw). Matrices are internally represented as a vector of columns. All
matrices with 0 columns are thus represented by the same object (internally, an empty vector), and
there is no way to distinguish between them. Thus it is not possible to create or represent matrices
with zero columns and an actual nonzero number of rows. The empty matrix [;] is handled as
though it had an arbitrary number of rows, exactly as many as needed for the current computation
to make sense:

? [1,2,3; 4,5,6] * [;]
%1 = [;]

The empty matrix on the first line is understood as a 3 x 0 matrix, and the result as a 2 x 0 matrix.
On the other hand, it is possible to create matrices with a given positive number of columns, each
of which has zero rows, e.g. using Mat as above or using the matrix function.

Note that although the internal representation is essentially the same, a row vector of column
vectors is not a matrix; for example, multiplication will not work in the same way. It is easy to go
from one representation to the other using Vec / Mat, though:

7 [1,2,3;4,5,6]
hl o=
[1 2 3]

[4 5 6]

? Vec(%)

%2 = [[1, 4]1~, [2, 5]~, [3, 6]-]
? Mat (%)

%3 =

[1 2 3]

[4 5 6]
2.3.16 Lists (t_LIST). Lists can be input directly, as in List ([1,2,3,4]); but in most cases, one
creates an empty list, then appends elements using listput:

? L = List(); listput(~L,1); listput(~L,2);
? L
%2 = List([1, 2])

Note the ~L: this means that the function is called with a reference to L and changes L in place.
Elements can be accessed directly as with the vector types described above.

2.3.17 Strings (t_STR). To enter a string, enclose it between double quotes ", as in: "this is a
string". The function Str can be used to transform any object into a string.
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2.3.18 Small vectors (t_VECSMALL). This type codes in an efficient way vectors containing only
small integers, such as permutations. Most gp functions will refuse to operate on these objects,
notable exceptions being vecsort and conversion functions such as Vec, but you can retrieve
entries and assign to them as for ordinary vectors. You can also convert back and forth between
t_VECSMALL and t_VEC objects using Vec and Vecsmall.

? v = Vecsmall([2, 4, 6])
%1 = Vecsmall([2, 4, 6])
? v[1]

%2 = 2

? v[1] = 3; v

%3 = Vecsmall([3, 2, 3])

? v[2..3]

%4 = Vecsmall([2, 3])
7 v[~2]

%5 = Vecsmall([3, 3])
? Vec(v)

%6 = [3, 2, 3]

Allowed entries for a t_VECMALL are signed integer = such that |z| < 23! on a 32-bit architecture,

resp. x| < 25 on a 64-bit architecture Assigning a larger integer to a t_VECSMALL entry triggers
an exception:

? v[1] = 2763
**%*x  at top-level: v[1]=2"63
*okok e
*kok incorrect type in t_VECSMALL assignment (t_INT).

2.3.19 Functions (t_CLOSURE). We will explain this at length in Section 2.7. For the time being,
suffice it to say that functions can be assigned to variables, as any other object, and the following
equivalent basic forms are available to create new ones

f=(x,y) > x"2+y"2

f(x,y) = x72 + y°2
2.3.20 Error contexts (t_ERROR). An object of this type is created whenever an error occurs: it

contains some information about the error and the error context. Usually, an appropriate error is
printed immediately, the computation is aborted, and GP enters the “break loop”:

7 1/0; 1 + 1
***%  at top-level: 1/0;1+1
*kk o

*x*%x _/_: division by a noninvertible object
**%*x  Break loop: type ’break’ to go back to the GP prompt

Here the computation is aborted as soon as we try to evaluate 1/0, and 1 4 1 is never executed.
Exceptions can be trapped using iferr, however: we can evaluate some expression and either
recover an ordinary result (no error occurred), or an exception (an error did occur).

? i = Mod(6,12); iferr(1/i, E, print(E)); 1 + 1
error ("impossible inverse modulo: Mod(6, 12).")
%1 =2
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One can ignore the exception, print it as above, or extract non trivial information from the error
context:

? i = Mod(6,12); iferr(1/i, E, print(component(E,1)));
Mod (6, 12)

We can also rethrow the exception: error(E).

2.3.21 Infinity (t_INFINITY).

There are only two objects of this type +oo and -oo, representing +o0o. This type only contain
only two elements oo and -oo, They are used in functions sur as intnum or polrootsreal, to
encode infinite real intervals. These objects can only be negated and compared to real numbers
(t_INT, t_REAL, t_FRAC), but not included in any computation, i.e. 1+oo0 is an error, not oo again.

2.4 GP operators.

Loosely speaking, an operator is a function, usually attached to basic arithmetic operations, whose
name contains only nonalphanumeric characters. For instance + or -, but also = or +=, or even [ ]
(the selection operator). As all functions, operators take arguments, and return a value; assignment
operators also have side effects: besides returning a value, they change the value of some variable.

Fach operator has a fixed and unchangeable priority, which means that, in a given expression,
the operation with the highest priority is performed first. Unless mentioned otherwise, opera-
tors at the same priority level are left-associative (performed from left to right), unless they are
assignments, in which case they are right-associative. Anything enclosed between parenthesis is
considered a complete subexpression, and is resolved recursively, independently of the surrounding
context. For instance,

a+b+c --> (a+Db) +c \\ left-associative
a=b=c --> a=(b=c) \\ right-associative

Assuming that opi, opsa, ops are binary operators with increasing priorities (think of +, *, =),

X 0p Y Opgy 2 0Py X OP3 Y

is equivalent to
z opy ((y opy z) opy (z op3 y)).

GP contains many different operators, either unary (having only one argument) or binary, plus
a few special selection operators. Unary operators are defined as either prefiz or postfix, meaning
that they respectively precede (op x) and follow (x op) their single argument. Some symbols are
syntactically correct in both positions, like !, but then represent different operators: the ! symbol
represents the negation and factorial operators when in prefix and postfix position respectively.
Binary operators all use the (infix) syntax x op y.

Most operators are standard (+, %, =), some are borrowed from the C language (++, <<),
and a few are specific to GP (\, #). Beware that some GP operators differ slightly from their C
counterparts. For instance, GP’s postfix ++ returns the new value, like the prefix ++ of C, and the
binary shifts <<, >> have a priority which is different from (higher than) that of their C counterparts.
When in doubt, just surround everything by parentheses; besides, your code will be more legible.
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Here is the list of available operators, ordered by decreasing priority, binary and left-associative
unless mentioned otherwise. An expression is an lvalue if something can be assigned to it. (The
name comes from left-value, to the left of a = operator; e.g. x, or v[1] are lvalues, but x + 1 is
not.)

e Priority 14

: as in x:small, is used to indicate to the GP2C compiler that the variable on the left-hand
side always contains objects of the type specified on the right hand-side (here, a small integer) in
order to produce more efficient or more readable C code. This is ignored by GP.

e Priority 13
( ) is the function call operator. If f is a closure and args is a comma-separated list of
arguments (possibly empty), f(args) evaluates f on those arguments.

e Priority 12

++ and -- (unary, postfix): if z is an 1value, z++ assigns the value z + 1 to z, then returns
the new value of z. This corresponds to the C statement ++z: there is no prefix ++ operator in GP.
x—- does the same with x — 1. These operators are not associative, i.e. x++++ is invalid, since x++
is not an lvalue.

e Priority 11
.member (unary, postfix): x.member extracts member from structure x (see Section 2.8).

[ ] is the selection operator. x[i] returns the i-th component of vector x; x[i,j], =[,7]
and x[i,] respectively return the entry of coordinates (i, 7), the j-th column, and the i-th row of
matrix . If the assignment operator (=) immediately follows a sequence of selections, it assigns its
right hand side to the selected component. E.g x[1] [1] = 0 is valid; but beware that (x[1]) [1]
= 0 is not (because the parentheses force the complete evaluation of x[1], and the result is not
modifiable).

e Priority 10

> (unary, postfix): derivative with respect to the main variable. If f is a function (t_CLOSURE),
f is allowed and defines a new function, which will p